Nonlinear Stability and Control of Gliding Vehicles
نویسندگان
چکیده
In this thesis we use nonlinear systems analysis to study dynamics and design control solutions for vehicles subject to hydrodynamic or aerodynamic forcing. Application of energy-based methods for such vehicles is challenging due to the presence of energyconserving lift and side forces. We study how the lift force determines the geometric structure of vehicle dynamics. A Hamiltonian formulation of the integrable phugoidmode equations provides a Lyapunov function candidate, which is used throughout the thesis for deriving equilibrium stability results and designing stabilizing control laws. A strong motivation for our work is the emergence of underwater gliders as an important observation platform for oceanography. Underwater gliders rely on buoyancy regulation and internal mass redistribution for motion control. These vehicles are attractive because they are designed to operate autonomously and continuously for several weeks. The results presented in this thesis contribute toward the development of systematic control design procedures for extending the range of provably stable maneuvers of the underwater glider. As the first major contribution we derive conditions for nonlinear stability of longitudinal steady gliding motions using singular perturbation theory. Stability is proved using a composite Lyapunov function, composed of individual Lyapunov functions that prove stability of rotational and translational subsystem equilibria. We use the composite Lyapunov function to design control laws for stabilizing desired relative equilibria in different actuation configurations for the underwater glider. We propose an approximate trajectory tracking method for an aircraft model. Our method uses exponential stability results of controllable steady gliding motions, derived by interpreting the aircraft dynamics as an interconnected system of rotational and translational subsystems. We prove bounded position error for tracking prescribed, straight-line trajectories, and demonstrate good performance in tracking iv unsteady trajectories in the longitudinal plane. We present all possible relative equilibrium motions for a rigid body moving in a fluid. Motion along a circular helix is a practical relative equilibrium for an underwater glider. We present a study of how internal mass distribution and buoyancy of the underwater glider influence the size of the steady circular helix, and the effect of a vehicle bottom-heaviness parameter on its stability.
منابع مشابه
Nonlinear gliding stability and control for vehicles with hydrodynamic forcing
This paper presents Lyapunov functions for proving stability of steady gliding motions for vehicles with hydrodynamic or aerodynamic forces and moments. Because of lifting forces and moments, system energy cannot be used as a Lyapunov function candidate. A Lyapunov function is constructed using a conservation law discovered by Lanchester in his classical work on phugoid-mode dynamics of an airp...
متن کاملStability of Three-Wheeled Vehicles with and without Control System
In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...
متن کاملType-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles
The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzzin...
متن کاملPassivity - Based Stabilization of Underwater Gliders With a Control Surface
The problem of stabilizing steady gliding is critical for an underwater glider, which is subject to many non-negligible disturbances from the aquatic environment. In this paper, we propose a new systematic controller design and implementation approach for the stabilization problem, including a nonlinear, passivity-based controller and a nonlinear model-based observer, where the actuation is rea...
متن کاملDynamics and Control of Underwater Gliding
I am in terested in establishing a framework for studying dynamics and control of underwater gliders. I am focussing on dedicated gliding vehicles that hav e the ability to change mass (or v olume) for buoyancy control and to redistribute mass for attitude control. Later on it is of in terest to consider vehicles that use glide maneuvers to complement more traditional methods of control actuati...
متن کامل